

EV FireSafe

Enhancing safety for emergency responders at electric vehicle fires

EV fire information pack for volunteer emergency brigades

Supported by:

In partnership with:

Welcome to EV FireSafe

We've been researching EV traction battery fires & what they mean for Australian emergency responders.

Electric vehicles are less likely to catch fire than internal combustion vehicles, but they present new challenges & risks for emergency responders, secondary responders, EV drivers & the public.

This free presentation provides a look at what we know, & includes a snapshot of the EV sector in Australia & international best practice examples. It's suitable for volunteer emergency brigades & anyone wanting to know more about EV traction battery fires.

Please note that this pack is provided for information only & you should follow your agency or organisation SOPs at an incident involving an electric vehicle.

Electric vehicles in Australia

- When we talk about an 'electric vehicle' we mean:
 - BEV Battery Electric Vehicle with a fully electric drivetrain
 - PHEV Plug-in Hybrid Electric Vehicle with a petrol & electric drivetrain
- What are the most common EVs in Australia?
- How many EVs are here & how many are coming?
- Electrification is across all transport sectors

What is an EV?

BEV - Battery electric vehicle ALL plug in to charge up

PHEV - Plug in hybrid electric vehicle ALL have lithium ion traction battery

These are the most common electric vehicles in Australia (2021)

Outlander PHEV

EVs in Australia

EV ownership is concentrated in capital & major cities, but there are now EVs in every Australian region

compound annual growth rate of EVs since 2010

EVs across all sectors

All these vehicles are electric & currently in operation in Australia

Light commercial

Tradies & mining

Bikes & scooters

Public transport

Electric vehicle identification

There are a number of ways to identify an EV, but emergency responders should familiarise themselves with electric makes & models available in Australia

- Primarily:
 - ask the driver & passengers (if possible)
 - look for the blue 'EV' triangle badge on numberplates
- Identification may not be possible if the vehicle is fully involved in fire

Blue 'EV' badge

The blue triangle 'EV' sticker is mandatory in many states & becoming standard nationally

On all EVs

Blue triangle EV badge

EV ID not always helpful

By the time emergency responders arrive on scene, it may not be possible to see identifying features

Electric vehicle identifying thermal runaway

Understanding an EV battery & the characteristics of an EV battery fire will help you determine you're dealing with an electric vehicle incident

- What is an EV traction battery & how is it constructed?
- All EV fires start with thermal runaway
- What is thermal runaway & what does it look like from a firefighters perspective?
- Risk of vapour cloud explosion

EV lithium ion traction battery

The traction battery supplies power for vehicle momentum & is usually located beneath the vehicle, along the floor pan

EV lithium ion traction battery

A traction battery pack is typically constructed like this:

Lithium ion battery cell

Multiple cells make a battery module

Multiple modules make a battery pack, which is enclosed in a battery casing

All EV fires start with thermal runaway

Thermal runaway occurs when a battery cell suffers abuse, for example from a traffic collision. This causes a short circuit, which heats up the cell & dissipates that heat into other surrounding cells.

A battery cell suffers abuse (ie. traffic collision) The cell short circuits & heats up

Pressure (in the form of gases) escape via cell safety valve Other nearby cells heat up

Ignition or vapour cloud explosion occurs

Other cells follow

Thermal runaway

is an unstable chemical process that is difficult to bring under control.

It looks & sounds like this:

Dark vapour cloud, light vapour cloud

(It's NOT smoke)

The vapour cloud is often mistaken for smoke, but it is a highly flammable & toxic mix of gases, primarily hydrogens.

Popping - blast caps Hiss/whistle - gas venting Projectiles - cell debris

One of two things will occur

~90% of the time the gases will ignite

~10% of the time the vapour cloud will explode (often in enclosed spaces)

Once ignited: Directional, jet like flames Up to 2700°C

Thermal runaway & ignition

Go to 04.3 EV traction battery fire behaviour at evfiresafe.com & watch the video; volume up

Thermal runaway - vapour cloud explosion

Go to 04.2 What is thermal runaway? at evfiresafe.com & watch the video; volume up

Recap: EV fire characteristics

From an emergency responder perspective, thermal runaway looks & sounds like this

Electric vehicle fire suppression

- Recommended by Tesla & most fire agencies
 lots of water, established early
- Cool battery & suppress flames
- Best practice examples used internationally
- Can it burn out?
- More resources may be required

Your agency SOPs should be followed!

Use lots of water

Establish water supply as soon as an EV fire is identified; more tankers, bulk tanker, hydrant connection

Use water to cool battery & suppress flames

Establish a continuous stream of water onto the underside of the vehicle - where the traction battery is located - to absorb the heat being generated by the battery cells in thermal runaway

See 4.7 Suppression methods

Cool battery; slows thermal runaway

Cooling the battery with a continuous stream of water will slow & eventually stop the thermal runaway process - this may take several hours

International best practice

Many US fire agencies jack up one side of vehicle to get water directly onto the traction battery underside

Brock Archer, YouTube

International best practice

Put entire EV in water. Used by a number of fire agencies, but not recommended by Tesla due to reignition risk

Can it burn out?

Is it possible to allow the traction battery to burn out completely? This removes risk of stranded energy & reignition

EV fire suppression may require more resources

Electric vehicle fire suppression with EV charging

What are the additional risks to emergency responders if a burning EV is connected to energised charging?

- A third of all EV fires occur when the vehicle is connected to energised charging
- Charging is not necessarily the fire cause
- What to do if a burning EV is connected to AC or DC charging
- Best practice cut power at distribution board

33% of EV fires occurred while charging

Charging is not the cause of EV fires; by their very nature, EVs spend significant amounts of time plugged into charging

If connected to AC EV charging (7/22kW)

In theory, electrically compliant units with RCM Tick that are installed to AS3000 will cut between car & distribution board

If connected to DC EV charging (50/350kW)

In theory, electrically compliant units with RCM Tick that are installed to AS3000 will cut between car & DC charging unit

Best practice

Treat as an energised electrical fire & follow your SOPs

Don't touch anything until distribution board is located & cut

Fire reignition occurs when thermal runaway is not finished

- Reignition happens 10% of the time
- It poses a risk to tow trucks, drivers & storage yards
- Occurs when thermal runaway hasn't finished
- 2 reignition case studies
- Best practice internationally

10% likelihood of EV fire reignition

In 6 cases

Damage caused to tow truck

In 2 cases

Injuries to drivers

Reignition occurs when thermal runaway is not finished

A battery cell within a module is abused, ignites & is extinguished

Another cell in a different module may have been abused in the original incident or by fire. When extinguished vehicle is moved, that cell may then go into thermal runaway.

Reignition case studies

When can a burnt EV be made safe?

Electric vehicles are less likely to catch fire than internal combustion engine vehicles

But, when they do, there are new & different challenges for emergency responders

Go to evfiresafe.com for more information

Thanks!

Have a question, noticed a problem or want to organise a free presentation? Contact:

Emma Sutcliffe

Project Director emma@evfiresafe.com 0409 040 499

Scan with your smart phone camera to jump to the EVFS website

